21世纪的突破

儿童资源网

21世纪的突破

  纳米材料的应用将以丰富多彩的特色在材料科学史上描绘出奇妙的一页,如纳米镍粉或铜锌纳米粉末对某些化合物反应是极好的催化剂,可代替昂贵的铂金或钯催化剂。铁的纳米颗粒外面覆盖着一层5~20nm(纳米)的聚合物,可以固定大量蛋白质或酶,以控制生物反应,在生物技术和酶工程领域中大有用处。高分子的纳米材料在润滑剂、高级涂料、人工肾脏、各种传感器及功能电极材料方面均有重要应用。纳米材料的磁性功能也是非常突出的,纳米级的磁记录材料能获得很高密度的磁记录特性。纳米材料不仅包括粉状,而且还有纳米级的薄膜和纳米纤维。纳米薄膜又称超薄膜材料,制成10nm磁膜或磁带材料,其磁性能得到显著的改善,如铁——硼——硅非晶磁膜的磁导率比一般同类成分的磁性材料分别提高10倍。

  纳米机器人(nanorobot)正在科学家们精心的设计之中,第一代的纳米机器人是生物系统(如酶)和机械系统有机结合的产物,即使用多功能的微型机器人(称为易于在人体血管流动的药物),注入人体血管内,作为全身健康检查,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至还能消灭病毒,杀死癌细胞。第二代纳米机器人是直接从原子、分子装配成有一定功能的纳米尺寸的装配装置,它具有自我调节能力和转换程序,例如可以生产人体所需的蛋白质。第三代纳米机器人将是含有纳米电子计算机的,可以实现人机对话的并有自身复制能力的纳米装置。那时,人类的劳动方式将彻底改变,劳动的主体——人将得到完全解放!

  纳米材料一出现,有的科学家就预言,纳米材料将是21世纪材料构成的基本单元,这就意味着,由纳米材料构成的许多新材料将会显示出许多前所未有的奇异特性。于是,美国最早成立了纳米研究中心。早在1985年,日本就建立了全国性的研究体制。英国政府在财政困难下,1992年投入1280万英镑支持纳米技术的发展。我国已在1990~1992年先后召开了两次全国性的纳米学术盛会,并把纳米技术纳入“863”计划。人类进化史表明一个真理,“一个充满挑战的时代也往往是一个充满机遇的时代”,机遇总是降临到敢于驾驭局势的人们。历史最终属于创造它的“上帝”。

  高分子王国

  在世界范围内,高分子材料的制品属于最年轻的材料。它不仅遍及各个工业领域,而且已进入所有的家庭,其产量已有超过金属材料的趋势,将是21世纪最活跃的材料支柱。

  高分子材料是有机化合物,有机化合物是碳元素的化合物。除碳原子外,其他元素主要是氢、氧、氮等。碳原子与碳原子之间,碳原子与其他元素的原子之间,能形成稳定的结构。碳原子是四价,每个一价的价键可以和一个氢原子键连接,所以可形成为数众多的、具有不同结构的有机化合物。有机化合物的总数已接近千万种,远远超过其他元素的化合物的总和,而且新的有机化合物还不断地被合成出来。这样,由于不同的特殊结构的形成,使有机化合物具有很独特的功能。高分子中可以把某些有机物结构(又称为功能团)替换,以改变高分子的特性。高分子具有巨大的分子量,达到至少1万以上,或几百万至千万以上,所以,人们将其称为高分子、大分子或高聚物。

  高分子材料包括三大合成材料,即塑料、合成纤维和合成橡胶(未加工之前称为树脂)。

  面向21世纪的高科技迅猛发展,带动了社会经济和其他产业的飞跃,高分子已明确地承担起历史的重任,向高性能化、多功能化、生物化三个方向发展。21世纪的材料将是一个光辉灿烂的高分子王国。

  现有的高分子材料已具有很高的强度和韧性,足以和金属材料相媲美,我们日用的家用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等,大部分的金属构造已被高分子材料所代替。工业、农业、交通以及高科技的发展,要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性,这些都是高分子材料要解决的重大问题。从理论上推算,高分子材料的强度还有很大的潜力。

  在提高高分子的性能方面,最重要的还是制成复合材料第一代复合材料是玻璃钢,是以玻璃纤维和合成树脂为粘合剂制成。它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易于加工等优良性能,用于火箭、导弹、船只和汽车躯体及电视天线之中。其后,人们把玻璃纤维换成碳纤维,其重量更轻,强度比钢要高3~5倍,这就是第二代的复合材料。如果改用芳纶纤维,其强度更高,为钢丝的5倍。高性能的高分子材料的开拓和创新尚有极大的潜力。科学家预测,21世纪初,每年必须比目前多生产1500~2000万吨纤维材料才能满足需要,所以必须生产大量的合成纤维材料,而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性。有许多新型纤维,如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出来,人们可指望会有耐静电、耐脏、耐油,甚至不会沾灰的纤维材料问世。这些纤维材料将用于宇航天线、宇航反射器、心脏瓣膜和人体大动脉。

  高分子功能材料,在高分子王国里是一片百花争艳的盛景。由于高分子的功能团能够替代,所以只要采用极为简便的方法,就可以制造各种各样的高分子功能材料。常用的吸水性材料,如棉花、海绵,其吸水能力只有本身重量的20倍,在挤压时,已吸收的大部分水将被挤出来。而用淀粉和丙烯腈制成的高分子吸水材料,它不仅能吸收自身重量数百倍到上千倍的水,而且受到挤压也不会挤出水来。人们可以期望,将高吸水性的高分子材料制成能将化学能转变成机械能的装置,以及具有类似于肌肉的功能或制造测量仪器。在微电子工业的光刻集成块工艺,常用的光刻胶(又称光致抗蚀材料),就是能使高分子相连接一种功能团,光照射时会起化学反应,使其溶解度降低或提高。应用这种光刻胶制备集成块,可以使集成块的线宽达到0.1到0.01微米(1‰毫米),只有用其他工艺制成的集成块的线宽的1/10到1/100,是适合于21世纪的电子计算机的主要元件——微细元件的开关。光刻胶并能用于各种精细加工,如半导体元件,EP刷线路板,金属板膜或表面的精细加工、玻璃、陶瓷的精细刻蚀、精密机械零件加工等。

  高分子功能材料应用在信息工程方面,已经生产了光电导摄影材料、光信息记录材料、光——能转换材料,并都已进入实用阶段。