小升初50道经典奥数题及答案详细解析

儿童资源网

小升初50道经典奥数题及答案详细解析

  39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。

  解:(240+264)÷(20+16)

  =504÷30

  =14(秒)

  答:从两车头相遇到两车尾相离,需要14秒。

  40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

  解:(600+1150)÷700

  =1750÷700

  =2.5(分)

  答:火车通过隧道需2.5分。

  41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

  解:60×2÷(60-50)=12(分)

  50×12=600(米)

  答:小明从家里到学校是600米。

  42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

  解:600÷(400-300)

  =600÷100

  =6(分)

  答:经过6分钟两人第一次相遇

  43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

  解:(12÷2)×(8÷2)=24(平方厘米)

  答:这个长方形纸板原来的面积是24平方厘米。

  44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

  解:(20-7.4)÷3-2.4

  =12.6÷3-2.4

  =4.2-2.4

  =1.8(元)

  答:每千克梨1.8元。

  45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

  解:135÷3÷(2+1)=15(千米)

  15×2=30(千米)

  答:甲乙每小时分别行30千米、15千米。

  46、想:两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

  解:12÷(8-5)=4(次)

  8×4+5×4+12=64(个)

  或8×4×2=64(个)

  答:一共取了4次,盒子里共有64个球。

  47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。

  解:12和18的最小公倍数是36

  6时+36分=6时36分

  答:下次同时发车时间是上午6时36分。

  48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。

  解:(45-15)÷(11-1)=3(岁)

  15-3=12(年)

  答:12年前父亲的年龄是儿子年龄的11倍。

  49、想:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

  解:2、3、4、5的最小公倍数是60

  60-1=59(支)

  答:这盒铅笔最少有59支。

  50、想:根据只把底增加8米,面积就增加40平方米, 可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。

  解:(40÷5)×(40÷8)=40(平方米)

  答:平行四边形地原来的面积是40平方米。